Simple Friction Comparison (Maths vs Graphical)

Tuesday, 15 March 2011
5:47 PM

Q4: (cont) A block of mass 2.1 kg rests on a horizontal table. The coefficient of friction is 0.2 . What horizontal force F will start the block moving?

$$
F_{\mathbf{f}}=\mu F_{\mathbf{n}} \quad \begin{aligned}
& \text { Mathematically: } \\
& \text { Coeff }=0.2, \text { mass }=2.1 \\
& \\
& \\
& \\
& \\
& \mathrm{Fn}=2.1 * 9.81=20.601 \mathrm{~N} \\
& \mathrm{Ff}=0.2 * \mathrm{Fn}=0.2 * 20.601=4.1202 \mathrm{~N}
\end{aligned}
$$

Graphically;
Angle of friction $=\operatorname{atan}($ coeff $)$

$$
=\operatorname{atan}(0.2)=11.31 \mathrm{degs}
$$

Convert mass to N: $2.1 * 9.81=20.601 \mathrm{~N}$

Measured on CAD
Pushing Force $=4.1202 \mathrm{~N}$

Q6: It took a force of $\mathrm{F}=108 \mathrm{~N}$ to get this block moving.
The coefficient of friction is 0.5 . What was the mass of the block?

$$
F_{\mathbf{f}}=\mu F_{\mathrm{n}}
$$

Mathematically:
Coeff $=0.5$, mass $=$?, Force $\mathrm{Ff}=108 \mathrm{~N}$
$\mathrm{Fn}=\mathrm{Ff} /$ coeff $=108 / 0.5=216 \mathrm{~N}$
So mass $=216 / 9.81=22.0183 \mathrm{~kg}$


```
\Gamma
```

Mathematically:
Coeff $=0.5$, mass $=$?, Force $\mathrm{Ff}=108 \mathrm{~N}$
$\mathrm{Fn}=\mathrm{Ff} / \mathrm{coeff}=108 / 0.5=216 \mathrm{~N}$
So mass $=216 / 9.81=22.0183 \mathrm{~kg}$

Graphically;
Angle of friction = atan (coeff)

$$
=\operatorname{atan}(0.5)=26.565 \mathrm{degs}
$$

360 deg notation $(90+26.565)=116.565$ degs

From CAD, weight force
Fn $=216.0005 \mathrm{~N}$
So mass $=216.0005 / 9.81$ $=22.0184 \mathrm{~kg}$

Q7: It took a force of $\mathrm{F}=130 \mathrm{~N}$ to get this 55 kg block moving. What is the coefficient of friction?

Mathematically:
Coeff $=$?, mass $=55 \mathrm{~kg}$, Force $\mathrm{Ff}=130 \mathrm{~N}$
$\mathrm{Fn}=55$ *9.81 $=539.55 \mathrm{~N}$
Coeff $=\mathrm{Ff} / \mathrm{Fn}=130 / 539.55=0.2409$

Graphically;
Solve using CAD, but find The angle last...

Angle of friction force is
103.547 degs (in 360 notation)

So angle of friction =

$$
103.547-90=13.547 \text { degs }
$$

So coeff $=\tan (13.547)$
$=0.24095$

Friction questions

Tuesday, 6 March 2012
6:30 PM

Q10: Block $A=31 \mathrm{~kg}$, and Block $B=36 \mathrm{~kg}$. The coefficient of friction between all surfaces is 0.25 . What force F will make block B slide?

$$
F_{\mathrm{f}}=\mu F_{\mathrm{n}}
$$

2 surfaces!
Top surface:
$\mathrm{Ff}=\mu \mathrm{Fn}=0.25^{*}\left(31^{*} 9.81\right)=76.0275 \mathrm{~N}$
Bottom surface:
$\mathrm{Ff}=\mu \mathrm{Fn}=0.25^{*}((31+36) * 9.81)=164.3175 \mathrm{~N}$
Total Force $=76.0275+164.3175=240.345 \mathrm{~N}$

Q11: This joint relies only on friction. $\mathrm{FORCE}=1.17$ kN and coefficient of friction between plates is 0.28 . What tension is needed in the bolt?

$$
\begin{aligned}
\mathrm{Ff} & =\mu \mathrm{Fn} \\
\mathrm{Fn} & =\mathrm{Ff} / \mu \\
& =1170 / 0.28 \\
& =4178.5714 \mathrm{~N}
\end{aligned}
$$

Q13: Force $A=3220 \mathrm{~N}$, angle $\mathrm{B}=54$ degs, mass is 0.57 tonnes. What is the coefficient of friction?

Get Components - Parallel and Normal to surface. $F_{\sim} \mid$
$\mathrm{Ax}=\mathrm{A} \cos (\theta)=3220 * \cos (54)=1892.669 \mathrm{~N}$
$\mathrm{Ay}=\mathrm{A} \sin (\theta)=3220 * \sin (54)=2605.035 \mathrm{~N}$
$\mathrm{W}=\mathrm{mg}=570 * 9.81=5591.7 \mathrm{~N}$

$$
F_{\mathbf{f}}=\mu F_{\mathrm{n}}
$$

Need the NORMAL FORCE!
$\mathrm{F}_{\mathrm{n}}=\mathrm{W}-\mathrm{Ay}=5591.7-2605.035=2986.665 \mathrm{~N}$
$\mathrm{F}_{\mathrm{f}}=\mu \mathrm{F}_{\mathrm{n}}$, so $\mu=\mathrm{F}_{\mathrm{f}} / \mathrm{F}_{\mathrm{n}}$
The friction force is the parallel force...
$\mathrm{F}_{\mathrm{f}}=1892.669 \mathrm{~N}$
So, $\mu=\mathrm{F}_{\mathrm{f}} / \mathrm{F}_{\mathrm{n}}=1892.669 / 2986.665=0.6337$ (No units)

Friction Inclined

Tuesday, 6 March 2012
7:33 PM
Q20: Incline angle $A=32$ degs, mass $=283 \mathrm{~kg}$. Coefficient of friction $=0.19$. What Force B is needed to pull it up the ramp?
$\mathrm{W}=283 * 9.81=2776.23 \mathrm{~N}$
Components WRT surface:
$\mathrm{Fp}=\mathrm{W} \sin (\theta)=2776.23 * \sin (32)=1471.178 \mathrm{~N}$
$\mathrm{Fn}=\mathrm{W} \cos (\theta)=2776.23 * \cos (32)=2354.377 \mathrm{~N}$

$\mathrm{Ff}=\mu \mathrm{Fn}=0.19 * 2354.377=447.3316 \mathrm{~N}$
Force balance in the parallel axis...
$\mathrm{Fb}=\mathrm{Fp}+\mathrm{Ff}$
$=1471.178+447.3316=1918.5096 \mathrm{~N}$

Ladder question

Tuesday, 5 March 2013
8:13 PM
Q23: The foot of a 4.2 m long ladder is $\mathrm{B}=1210 \mathrm{~mm}$ from the frictionless wall. If the COF is 0.21 , how high (C) can he stand before the ladder will slip?

Angle of friction $=\operatorname{atan}(0.21)=11.8598^{\circ}$ Force is at $90-11.8598=78.1402^{\circ}$
Now we have 3 forces of known direction; 1.Friction force at 79.7961°
2.Wall force at 180°
3.Weight of man at 270°

Solve using 3 force principle to find the position of the man, hence his height up the ladder.

Inclined everything

Tuesday, 6 March 2012
8:10 PM
Q24: Incline angle $\mathrm{A}=34$ degs, angle $\mathrm{B}=23$ degs, mass $=164$ $\mathrm{kg}, \mathrm{F} 1=1030 \mathrm{~N}$, coefficient of friction $=0.6$. What is the magnitude of normal force Fn?
$\mathrm{W}=164 * 9.81=1608.84 \mathrm{~N}$

1. Components compared to surface:
$\mathrm{Wp}=\mathrm{W} \sin (\theta)=1608.84 * \sin (34)=899.6519 \mathrm{~N}$
$\mathrm{Wn}=\mathrm{W} \cos (\theta)=1608.84 * \cos (34)=1333.789 \mathrm{~N}$

$\mathrm{F} 1 \mathrm{p}=1030^{*} \cos (23)=948.12 \mathrm{~N}$
$\mathrm{F} 1 \mathrm{n}=1030 * \sin (23)=402.453 \mathrm{~N}$
2. Normal (perp) Forces Balance

Fn + F1n -Wn
We want normal force (so we can do friction)
Fn $=-\mathrm{F} 1 \mathrm{n}+\mathrm{Wn}$
$=-402.453+1333.789=931.336 \mathrm{~N}$
3. Now do friction at interface
$\mathrm{Ff}=\mu \mathrm{Fn}=0.6 * 931.336=558.8016 \mathrm{~N}$

4. (EXTRA)

What is the net parallel force?
Force balance in the parallel...
-Wp - Ff + F1p
$=-899.6519-558.8016+948.12=-510.3335$
The force is too small to pull it up the hill when
friction is fighting against it, so it will stay still.

Q24: Incline angle $A=34$ degs, angle $B=23$ degs, mass $=164$ $\mathrm{kg}, \mathrm{F} 1=1030 \mathrm{~N}$, coefficient of friction $=0.6$. What is the magnitude of normal force Fn?

Solve this using CAD shall we?
$\mathrm{W}=164 * 9.81=1608.84 \mathrm{~N}$
Total force of surface TO the block:
932.5961 N

Friction of surface TO the block

48.4681 N down the slope

Normal force of surface TO the block
931.3357 N down the slope

Great Eastern

Tuesday, 26 March 2013 6:46 PM

; $\quad ;=3$

Rams
 Slope 1:12

Slope is measured as a rise of 1 for every 12 along the ramp. (12 is hypotenuse, not the horizontal)

The launching of the Great Easton 1857.
The Great Eastern was 6 times larger than any other ship when it was built. It was meant to slide down the launch ways and into the water. It got stuck. Several months later a series of hydraulic rams finally got it moving.

Q19: The Great Eastern was 12030 tonnes, and the hydraulic rams applied 3470 tonnes of force down the ramp. What was the coefficient of friction?

Angle $=\operatorname{asin}(1 / 12)=4.7802^{\circ}$
Find Fn, then use $\mathrm{Ff}=\mu \mathrm{Fn}$ to get μ.
Components...
$\mathrm{Wn}=12030 * 1000 * 9.81 * \cos (4.7802)$
$=1.17603 \mathrm{E} 8 \mathrm{~N}$
$=117603 \mathrm{kN}$

$\mathrm{Wp}=12030 * 1000 * 9.81 * \sin (4.7802)=9834.54 \mathrm{kN}$
Force balance in parallel direction;
"Sum of all forces in Parallel direction $=0 "$
$\mathrm{Fp}+\mathrm{Wp}-\mathrm{Ff}=0$
$\mathrm{Ff}=\mathrm{Fp}+\mathrm{Wp}=3470 * 9.81+9834.54=43875.24 \mathrm{kN}$
Now use $\mathrm{Ff}=\mu \mathrm{Fn}$ to get μ.
$\mu=\mathrm{Ff} / \mathrm{Wn}=43875.24 / 117603=0.3731$

