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given, and reference will be made to the simple truss shown in Fig.
4/5a for each of the two methods. The free-body diagram of the truss
as a whole is shown in Fig. 4/5b. The external reactions are usually
determined by computation from the equilibrium equations applied
to the truss as a whole before proceeding with the force analysis of
the remainder of the truss.

4/3 METHOD OF JOINTS. This methed for finding the forces in the

members of a simple truss consists of satisfying the couditions of
equilibrium for the forces acting on the connecting pin of each joint.
The method therefore deals with the eguilibrium of concurrent
forces, and only two independent equilibrium equations are involved.
We begin the analysis with any joint where at least one known load
exists and where not more than two unknown forces are present.
Solution may be started with the pin at the left end, and its free-body
diagram is shown in Fig. 4/6. With the joints indicated by letters, we
may designate the force in each member by the two letters defining
the ends of the member. The proper directions of the forces should be
evident for this simple case by inspection. The free-body diagrams of
portions of members AF and AB are also shown to indicate clearly the
mechanism of the action and reaction. The member AB actually
makes contact on the left side of the pin, although the force AB is
drawn from the right side and is shown acting away from the pin.
Thus, if we consistently draw the force artows on the same side of the
pinas the member, then tension (such as AB) will always be indicated
by an arrow aeway from the pin, and compression {such as AF) will
always be indicated by an arrow toward the pin. The magnitude of
AF is obtained from the equation ZF, = 0 and AB is then found
from ZF, = 0. )

Joint F must be analyzed next, since it now contains only two
unknowns, EF and BF. Joints B, C, E, and D are subsequently ana-
lyzed in that order. The free-body diagram of each joint and its
corresponding force polygon which represents graphically the two
equilibrium conditions ZF, = 0 and 2F, = 0 are shown in Fig. 4/7.
The numbers indicate the order in which the joints are analyzed. We
note that, when joint D is finally reached, the computed reaction R,
must be in equilibrium with the forces in members CD and ED,
determined previously from the two neighboring joints. This require-
ment will provide a check on the correctness of our work. We should
also note that isolation of joint € quickly discloses the fact that the
force in CE is zero when the equation ZF, = 0 is applied. The force
in this member would not be zero, of course, if an external vertical load
were applied at C.

It is often convenient to indicate the tension T and compression
C of the various members directly on the original truss diagram by
drawing arrows away from the pins for tension and toward the pins

™
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for compression, This designation is illustrated at the bottom of
Fig. 4/7.

In some instances it is not possible to assign initially the correct
direction of one or both of the unknown forces acting on a given pin.
In this event we may make an arbitrary assignment. A negative
value from the computation indicates that the assumed d.lrectlon is

ineorrect. )
If a simple truss has more external supports than are necessary to
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ensure a stable equilibrium configuration, the truss as a whole is

statically indeterminate, and the extra supports constitute external
redundancy. If the truss has more internal members than are neces-
sary to prevent collapse, then the extra members constitute internal
redundancy and the truss is stetically indeterminate. For a truss that
is statically determinate externally, there is a definite relation be-
tween the number of its members and the number of its joints neces-
sary for internal stability without redundancy. Since we can specify
the equilibrium of each joint by two sealar force equations, there are
in all 2f such equations for a simple truss with § joints. For the entire
truss composed of m two-force mermbers with a maximum of three
unknown support reactions, there areinalim 4 3 unknowns. Thus, for
a simple plane truss compesed of triangular elements, the equation
m + 3 = 2f will be satisfied if the truss is statically determinate in-
ternally.

This relation is a necessary condition for stability but it is not a
sufficient condition, since one or more of the m members can be
arranged in'such 2 way as not to contribute to 2 stable configuration
of the entire truss. I m + 8 3> 24, there are more members than there
are independent equations, and the truss is statically indeterminate
internally with redundant members present. Ifm + 3 < 24, thereisa
deficiency of internal members, and the truss is unstable and will
collapse under load.

The force polygon for each joint, shown in Fig, 4/7, may be
constructed graphically to obtain the unknown forces in the members
as an alternative to or as a check on the algebraic caleulations using
the force equations of equilibrium. If a consistent sequence around
each joint, clockwise, for example, has been uvsed for the addition of
the forces, we may superpose these force polygons on one another fo
form a composite graphical figure known as the Maxwell diegram.®
The force and its sense may be obtained directly from the diagram.
The student who is interested in structures may wish to experiment
with this construction and to consult other books dealing more com-
pletely with structural analysis for a more detajled description of the
Maxwell diagram.

Spacial conditions, We draw attention to several special condi-
tions which occur frequently in the analysis of simple trusses. When
two collinear members are under compression, as indicated in Fig,
4/8a, it is necessary to add a third member to maintain alignment of
the two members and prevent buckling. We see very quickly from 2
force summation in the y-direction that the force F, in the third
member must-be zero and from the x-direction that F, = F,. This
conclusion helds regardless of the angle & and, of course, holds if the
eollinear members are in tension. If an external force with & compo-

*The method was published by James Clerk Maxwell in 1864.
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nent in the y-direction were applied to the joint, then, of course, Fy
would no longer be zero.

‘When two noncollinear members are joined as shown in Fig.
4/8b, then in the absence of an externally applied load at this joint,
the forces in both members must be zero as we see from the two
force summations.

When two pairs of collinear membexrs are joined as shown in Fig,
4/8¢, the forces in each pair must be equal and opposite. This
conelusion follows from the force summations indicated in the figure.

rhy
Figure 4/8

Truss panels are frequently cross-braced as shown in Fig. 4/9a.
Such 2 panel is statically indeterminate if each brace is capable of
supporting either tension or compression. However, when the braces
are flexible members incapable of supporting compression, as are
cables, then only the tension member acts and the other member is
disregarded. It is usually evident from the asymmetry of the loading

how the panel will deflect. If the deflection is as indicated in Fig.

4/9b, then member AB should be retained and CD disregarded.
‘When this choice cannot be made by inspection, we may make an
arbitrary selection of the member to be retained. If the assumed
tension turns out to be positive upon caleulation, then the choice
was correct. If the assumed tension force turns out to be negative,
then the opposite member must be retained and the calculation
redone. ’

The simultansous solution of the equations for two unknown
forces at a joint may he avoided by a careful choice of reference axes.
Thus for the joint indicated schematically in Fig, 4/10 where L is

.known and F, and F, are unknown, a force summation in the =-

direction eliminates reference to F, and a force summation in the
x'~direction eliminates reference to F,. When the angles involved are
not easily found, then a simultaneous solution of the equations using
one set of reference directions for both unknowns may be preferable.

R F. = 0 requires FL =0
3. P =0 requires Fa=0

ZFy = § requires I}y = Fa
E e = 0 requires Fy = Iy

% B D B
A c A c
{a) (&)
Figure 4/9

_ Figure 4/10




Sample Problem 4/1

Compute the force in each member of the loaded cantilever truss by the
method of joints.

Solution. If it were not desired to calculate the external reactions at

N
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PROBLEMS

(Solve the following problems by the method of
joints. Neglect the weights of the members com-
pared with the forces they support unless otherwise
indicated.}

4/1 Calculate the force in each member of the loaded

truss. "Ans. AB = 352kNT
D and E, the analysis for a cantilever truss could begin with the joint at . BC =4.62kNC
the loaded end. However, this truss will be znalyzed completely, so the AC =327kNT

first step will be to compute the external forces at D and E from the
free-body diagram of the truss as a whole. The equations of equilibrium
glve

4/2 Calculate the force in each member of the truss.

5 _m €

C[EMg=0] 57~ 20(5) — 30(20) = 0 T = 80,0 kN | .
2
[EE.,=0] 80.0c0s30° —E, =0 E, = 69.3kN r
[EF,=0]  B0.0sin30° +E, —20 —30 =0 E, = 100kN :

Problem 4/2

Next we draw free-body diagrams showing the forces acting on each
of the connecting pins. The correctness of the assigned directions of the ¥
forces is verified when each joint is considered in sequence. There should 4/3 Calenlate the force in member CF of the loaded 6 kN

be no guestion about the correct direction of the forces on joint A.
Equilibrium requires

truss. Ans. CF =333 kN C

) dm E 4Am YF 4m _ 4

[ZE, =10] 0.866AB — 30 =0 AB =3464kNT Ans. :Iv 3m
{ZF. =0) AC —05(34.64) =0 AC=1732kNC Ans. : AR M
C B
where T stands for tension and C stands for compression. | BD ., Problem 4/3
Joint B must be analyzed next, since there are more than two un- AC———:B

known forces on joint C. The force BC must provide an upward compo- 5 . ' B c
nent, in which case BD must balance the force to the left. Again the forces KN 24643 ¢ ! 4/4 Calculate tl_:e farce In .each x!nember of the loaded = T
are obtained from Toint A Juint B H truss, All triangles are isosceles. N
[ZF, = 0] 0.866BC — 0.866(34.64) = 0  BC = 34.6¢ kN C Ans. , 4 D
[ZE = 0] BD — 205)34.64) = 0 BD = 3464 kN T Ans, D Note that we draw the foree arrow on the g by tm E tm  pvm

B . same side of the joint as the member ! .

Joint C now contains only two unknowns, and these are found in the which exerts the force. In this way tension : . L
same way as before: {arrow away from the joint) is distin- Problem 4/4
[ZF, =0]  0866CD — 0.866(34.64) — 20 = 0 guished fram compression (arrow toward " _

CD =5174IN T A the joint). 4/5 Caloulate the forces in members CG and GF for the 25N
- ek \ truss shown. om C 2m D
{SF,=0]  CE — 17.32 — 0.5(34.64) — 05(57.74) = 0 BC = 34861 op ' Ans. CG = 224KN T A2 3B 2T o 2%
=100KNC
CE =635LKN C Ans, /éD \ ; ) o
. L 63.28 kN ‘ ; 4EN 3m

Finally, from joint E there results e T (Eo
[ZF, = 0] 0866DE = 1000  DE = 1155kN Ans. 173N BaELIN
and the squation 2F, = 0 checks. EOKN 000K

Jaint C Joint E

Problem 4/5
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Problem 4/10

4/6 If the 2-kN force acting on the truss of Prob. 4/5

4/7

4/9

were removed, identify by inspection those mem-
bers in which the forees are zero. On the other
hand, if the 2-kN force were applied at & instead of
B, would there be any zero-force members?

Each member of the truss is a uniform 8-m bar with

a mass of 200 kg. Calculate the average tension or

compression in each member due to the weights of

the members. Ans. AE=CD =3.66kNC
AB=BC=283kNT
BE =BD = 22TkNT
DE =396kNC

Calculate the forces in members FG, EG, and GD
for the loaded cantilever truss.

Caleulate the forces in members JB and BH for the
loaded truss. Ans. JB = 586 kN C
BH = 471kNC

4/10 Determine the forces in members BI, CI, and HI for

the loaded truss. All angles are 30°, 60°, or 90°,

Article 4/3
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4/11 A snow load transfers the forces shown to the upper
joints of a Pratt roof truss, Negleet any horizontal
reactions at the supports and compute the forces in
members BH, BC, and CH,

4/12 Calculate the forces induced in members GH and
ED for the crane truss when it lifts an 1800-kg car.

4/13 The signboard truss is desigaed to support a hori
zontal wind foad of 4 kN. A separate analysis shows
that § of this force is transmitted to the center
connection at C and the rest is equally divided
between D and B. Caleulats the forces in members
BE and BC.

Ans. BE=280INT, BC = LN T

4/14 Caleulate the forces in members CF, BF, BG, and FG
for the simple crane truss.

2m H °m G 2m ¥ Zm

Problem 4/11

D
—] 3
—] 2m
-]
4kN—;*c Z r
—_>'.
el Zm
—l/z F
2m
2m
A (e}
1
2m -

Problem 4/14
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Problem 4/15

D 3 E
b
B F
b b
A
Problem 4/16

10 kN

Spanelzat3m
Problem 4/17

Problem 4/18

4/15 Calculate the forces in all members of the loaded
trass supported by the horizontal link FG and the
hinge at A. All interior angles are 80°.

Ans, AB=CB=DC=4kNC
BE=CE=DE=4kNT AE=10
EF=8KNT, AF=8kNC

4/16 Show that the truss is statically determinate and
determine the forces in members BD and BF in
terms of the applied load L.

4/17 Caleulate the forces in members AB, BJ, BL and CL
Members CH and DI are cables that are capable of
supporting tension only.

Ans. AB=T5KNC BI=CI=0,BI=75kNT

4/18 By inspection designate those mermbers of the truss
that cause the structure to be statically indetermi-
nate.

4/20

4/21
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-
Each of the loaded trusses has supporting con- cC B & ¢ B G =Hmm
straints which are statically indeterminate. List all H
members of each truss whose forces are not affected A H 4
by the indeterminacy of the supports and that may 2= |B D F whew 2w |8 |D F
be computed directly by using-only the equations of
equilibsium. Assume that the loading and dimen. (a) (&)
sions of the trusses are known. i
c FE G C E G
I
Al, B D F e =t
fc) ()

Verify the fact that each of the trusses contains one
or more elements of redundancy, and propose two
separate changes, either one of which would remove
the redundancy and produce complete statical
determinacy. All members can support compression
as well as tension.

The movable gantry is used to erect and prepare a
500-Mg rocket for firing. The primary structure of
the gantry is approximated by the symmetrical
plane truss shown, which is statically indeterminate.
As the gantry is positioning a 60-Mg section of the
rocket suspended from A, strain gage measurements
indicate a compressive force of 50 kN in member
AB and a tensile force of 120 kN in member CD due
to the 60-Mg load. Calculate the corresponding
forces in members BF and EF.

Ang, BF = 18B4 kN C, BF = 120kN T

Problern 4/20
H ¢ D
16 m
J F& B
- &
i
E il
Z i
= |
=2 e
2 |
§="
= i
]
!
i gyl

16 m 24 m
Problem 4/21

16 m

]
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Problem 4/23

5 e Chaz’ﬁ
»4/22 The tower for a transmission line is modeled by the
truss shown. The crossed members in the center
sections of the truss may be assumed capable of
supporting tension only. For the loads of 1.8 kN
applied in the vertical plane, compute the forces
induced in members AB, DB, and CD.

Ans. AB=383kNC, DB =0,CD =083kNC

»4/23 Find the forces in members EE, KL, and GL for the
Fink truss shown. (Hing: Note that the forces in BB,
PC, DN, etc., are zero.)
Ans. EF = 202kNC
KL =100kNT
GL =500kKNT

4/4
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METHOD OF SECTIONS. In the previous article on the analysis
of plane trusses by the method of joints we took advantage of only
two of the three equilibrium equations, since the procedures involve
concurrent forces at each joint. We may take advantage of the third
or moment equation of equilibrium by selecting an entire section of
the truss for the free body in equilibrium under the action of a
nonconcurrent system of forces. This method of sections has the basic
advantage that the force in almost any desired membey may be found
directly from an analysis of a section which has cut that member.
Thus it is not necessary to proceed with the calculation from joint to
joint until the member in guestion has been reached. In choosing a
section of the truss we note that, in general, not more than three
members whose forees are unknown may be cut, since there are only
three available equilibrium relations which are independent.

The method of sections will now be illustrated for the truss in
Fig. 4/5, which was used in the explanation of the previous method.
The truss is shown again in Fig. 4/11a for ready reference. The
external reactions are first computed as before, considering the truss
as a whole, Now let us determine the force in the member BE for
example. An imaginary section, indicated by the dotted line, is passed
through the truss, cutting it into two parts, Fig. 4/11b. This section
has cut three members whose forces are initially unknown. In order
for the portion of the truss on each side of the section to remain in
equilibrium it is necessary to apply to each cut member the force that
was exerted on it by the member cut away. These forces, either
tensile or compressive, will always be in the directions of the respec-
tive members for simple trusses composed of two-force members. The
left-hand section is in equilibrium under the action of the applied
load L, the end reaction R, and the three forces exerted on the cut
members by the right-hand section which has been removed. We may
usually draw the forces with their proper senses by a visual approxi-
mation of the equilibrium requirements. Thus in balancing the mo-
ments about point B for the left-hand section, the force EF is clearly
to the left, which makes it compressive, since it acts toward the cut
section of member EF, The load L is greater than the reaction R, so

A T = r TD
Ry L Ry

Figure 4/11

———x
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that the force BE must be up and to the right to supply the needed
upward component for vertical equilibrium. Force BE is therefore
tensile, since it acts away from the cut section. With the approximate
magnitudes of R, and L in mind we see that the balance of moments
about point E requires that BC be to the right. A casual glance at the
truss should lead to the same conelusion when it is realized that the
lower horizontal member will stretch under the tension caused by
bending. The equation of moments about joint B eliminates three
forces from the relation, and EF may be determined directly. The
force BE is caleulated from the equilibrivm equation for the y-direc-
tion. Finally, we determine BC by balancing moments about point E.
In this way each of the three unknowns has been determined inde-
pendently of the other two.

The right-hand section of the truss, Fig. 4/11b, is in equilibrivm
under the action of R, and the same three forces in the cut members
applied in the directions opposite to those for the left section. The
proper sense for the horizontal forces may easily be seen from the
balance of moments about points B and E.

‘We may use either section of a truss for the caloulations, but the
one involving the smaller number of forces will usually yield the
simpler solution.

It is essential to understand that in the method of sections an
entire portion of the truss is considered a single body in equilibrium.
Thus the forces in members internal to the section are not involved in
the analysis of the section as a whole. In order to clarify the free body
and the forces acting externally on it, the section is preferably passed
through the members and not the joints,

The moment equations are used to great advantage in the
method of sections, and a moment center, either on or off the section,
through which as many forces pass as possible should be chosen. It is
not always possible to assign an unknown force in the proper sense
when the free-body diagram of a section is initially drawn. With an
arbitrary assignment made, a positive answer will verify the assurned
sense and a negative result will indicate that the force is in the sense
opposite to that assumed. Any system of notation desired may be
used, although usually it is found convenient to letter the joints and
designate 2 member and its force by the two letters defining the ends
of the member. .

An alternative notation preferred by some is to assign all un-
known forces arbitrarily as positive in the tension direction (away
from the section) and let the algebraic sign of the answer distinguish
between tension and compression. Thus a plus sign would signify
tension and a minus sign compression. On the other hand the advan-
tage of assigning forces in their correct sense on the free-body dia-
gram of a section wherever possible is that it emphasizes the physical
action of the forces more directly and is preferred in this treatment.

Frey

Sample Problem 4/2

Caleulzte the forces induced in members KL, CL, and CB by the 200-kN
load on the cantilever truss.

Solution. Although the vertical compenents of the reactions at A
2nd M are statically indeterminate with the two fixed supports, all mem-
bers other than AM are statically determinate. We may pass a section
directly through members KL, GL, and CB and analyze the portion of the

(D truss to the left of this section as a statically determinate rigid hody.

The free-body diagram of the portion of the truss to the left of the
section is shown, A moment sum about L quickly verifies the assignment of
CB as compression, and a moment sum about € quickly discloses that KT,
is in tension. The direction of CL is not quite so obvious until we cbserve
that KL and CB intersect at a point P to the right of G. A moment sum
about P eliminates reference to KL and CB and shows that CL must be
compressive to balance the moment of the 200-kN force about P With
these considerations in mind the solution becomes straightforward, as we
now see how to solve for each of the three unknowns independently of the
other two.

2} Summing moments about L requires the moment arm BL =
4 4+ (65 — 4)/2 = 5.25 m. Thus

[EM, =0] 200(5)(3) — CB(5.25) =0 GB=S5T1kNC Ans.,
Next we take moments about C which requires a caleulation of cosé.
From the given dimensions we see § = tan~1{5/12) so that cos § = 12/13.
Therefore
[EMg=10]  200(4)(3) — BKL{4) =0 KL= 650kN T Ans.

Finally we may find CL by a moment sum about P whose distance
from C is given by PC/4 = /(6.5 — 4) or PC = 9.60 m. ‘We also need §
whick is given by B = tan~Y(CB/BL} = tan™'(3/5.25) = 29.7° and
cos # = 0.868. We now have

200{12 — 9.60) — CL(0.868)(9.60) = 0
CL =S5TEKNC Ans.

© [EMp =0]

E' D c
6 panels at 3m

(@ We note that analysis by the method of
joints would necessitate working with
eight joints in order to caleulate the three
forces in question. Thus the method of
sections offers 2 considerable advantage in
this case.

(@ We could have started with moments
about C or P just as well.

(@ We could also have determined CL by
a foree summation in either the = or
y-direction.




Sample Problem 4/3

Caleulate the force in member DJ of the Howe roof truss illustrated.
Neglect any horizontal components of force at the supports.

Selution. It is not possible to pass a section through DF without
cutting four members whose forces are unknown. Although three of these
cut by section 2 are concurrent at J and therefore the moment equation
about J conld be used to obtain DE, the force in DJ cannot be obtained
from the remaining two equilibrium principles. It is necessary to consider
first the adjacent section 1 before considering section 2.

The free-body dizgram for section 1 is drawn and includes the reac-
tion of 18.3 kN at A, which is previously calculated from the equilibrium
of the truss as a whole. In assigning the proper directions for the forces
acting on the three cut members we see that 2 balance of moments about
4 eliminates the effects of CD and JK and clearly requires-that Gf be up
and to the left. A balance of moments about C eljminates the efect of the
three forces concurrent at C and indicates that JK must be to the right to
supply sufficient counterclockwise moment. Again it should be feirly
obvious that the lower chord is under tension because of the bending
tendency of the truss. Although it should also be apparent that the top
chord is under compression, for purposes of illustration the force fn CD
will be arbitrarily assigned as tension.

By the analysis of section 1, CJ is obtained from

(EM, = 0] 0.707CK12) — 104) — 10{8) =0 GF=141KNC

In this equation the moment of CF is calculated by considering its hori-
zontal and vertical components acting at point J. Equilibrium of moments
about J requires

[EM; =0] 0894CD(6) + 18.3(12) - 10(4) — 10(8) = 0
CD = —186kN

The moment of CD about J is calculated here by considering its two
components as ecting through 2. The minus sign indicates that CD was
assigned in the wrong direction.

Hence CD=186kNC Ans.

From the free-body diagram of section 2, which now includes the
kaown value of CJ,  balance of moments about G is seen to eliminate DE
and JE. Thus

EM; =0] 12D/ + 10(16) + 10(20) — 18.3(24) — 14.1{0.707}(12) = 0

DIf=166kNT Ans.

Again the moment of CJ is determined from its components considered to
be acting at J. The answer for DJ is positive, so that the assumed tensile
direction is correct. An analysis of the joint D alone also verifies this
conclusion.

In choosing a section it is always important to match the number of
unknowns with the number of independent equilibrium equations which
may be applied.
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6 panels at 4 m
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g\q Section 1
A

-ﬁb.}'

183kN

@ There is no harm in assigning one or more

of the forees in the wrong direction as long
as the caleulations are consistent with the
assumption. A negative answer will show
the need for reversing the direction of the
foree.

@ If desired, the direction of CD may be

changed on the free-body diagram and the
algebraic sign of CD reversed in the calcu-
lations, or else the work meay be left as it
stands with a note stating the proper di-
rection. ’

~. .
. Section 2
-
-~

&

18.3kN

(® Observe that a section through members

CD, Df, end DE could be taken that would
cut only three unknown members. How-
ever, since the forces in these three mem-
bers are all concurrent at D, & moment
equation about D) would yield no informa-
tion about them. The remaining two force
equations would not be sufficient to solve
for the three unlmowns.
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PROBLEMS

(Solve the following problems by the method of
seetions. Neglect the weight of the members com-
pared with the forces they support.)

4/24 Calculate the forces in members AB, BF, and EF in
the loaded truss.
Ans. AB = 8XNT, BF = 2kN C, EF = 4/5KNC

4/25 Calculate the forces in members ED and EB in the
lnaded truss composed of equilateral triangles.

4/26 Determine the force in member CF in terms of the
applied load L. Al interior angles are 60°.
Ans. CF = 8L/V/3,C

4/27 Calculate the forces in members CD, BC, and CC in
the loaded truss composed of equilateral triangles.

Agm B 2m C 2m D

4 kN

Problem 4/25

c D
B b b
i G
L
A
Problem 4/26

2 kN
Problem 4/27
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4/28 Calculate the force in members AB, BG, and GE
Solve for each force from an equilibrium equation
which contains that force as the only unknown.

Ans. AB=T2kNT, BG =3kNC,
GF=78kNC

4/29 Assume that the cross braces in the bridge truss are

T Hlexible members incapable of supporting compres-
19m sion. Calculate the force in member DE for the
loading condition shown.

A
L l K o I
320 kN 480 kN
5 panels at 9 m
Problem 4/29

5m H
& bm |D5m C E

0N 10kN M

B I

Sm

Problem 4/31

4/30 Calculate the forces in members DI, DE, and EI for
the loaded truss shown.
Ans. DI = 18N C, DE = 85.5kN C,
EI=0

4/31 Calculate the forces in members CH, CB, and GH
for the cantilevered truss. Solve for each force from
2 moment equation which contains that force as the
only unknown.

.
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4/32 Compute the forces in members BC, C1, and HI for
the truss of Prob, 4/10 repeated here. Solve for each
force from an eguilibrivm equation which contains
that force as the only unlmown.

Ans. BC=433kNC, CI = 2 12KNT
HI = 269kNT

4/33 Thé roof truss is composed of 30°-60° right trian.
gles and is loaded as shown. Compute the forces in
members BH and HG. *

4/34 A crane is modeled by the simple truss shown.
Compute the forces in members DE, DG, and HG
under the load of the tractor, which has a mass of
1631 kg. Ans.DE = 16N T,DC = 339N T

HG =40kNC

4/35 Gompute the forces in members CH, CD, and HI for
the crane truss of Prob. 4/34.

C, D
B, B
A F
TEsEs o/2 lI o \LH a G c/zE=s
4K 2 kN
Problem 4/32
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4 kN

Problem 4/36
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Problem 4/39

4/36 Solve for the forces in members BG and BF of the
signboard truss of Prob. 4/13 repeated here. The
resultant of the 4-kN wind lond passes through C.

Ans. BG=2VEKN C, BF = 4kNT

4/37 Calculate the forces in members FC and FB due to
the 100-kN load on the crane truss.

4/38 Each of the members BE and FC is capable of
supparting compression as well as tension, Compute
the forees in members GF, BE, and EF.

Ans, BE = 1.66TkN C, FC = 3.33kN C
EF =4kNT

4/39 The truss shown is composed of 45° right triangles.
The crossed members in the center two panels are
slender tie rods incapable of supporting compres-
sion. Retain the two rods which are under tension
and compute the magnitudes of their tensions. Also
find the foree in member MN.
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4/40 The crane truss is secured to the fixed supports at 4
and K, and its winch W is locked in position while
supporting the 1.5-Mg tank. Identify any statically
indeterminate members and caleulate the force in
member HG. Ans. HG =588kNC

4/41 The transmission-line truss of Prob. 4/22 is shown
again here. Assume that the crossed members are
capable of supporting tension only and compute the
force in member FC under the action of the loading
shown.

4/42 Find the force in member JQ for the Baltimore truss
where all angles are 30°, 60°, 90°, or 120°.
Ans. JO = 517N C

2o 2m 2 meil=2
c D
2m
H el *1001:11_“:1’z
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2m 1.5 Mg
¥ A

Problem 4/40
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